A Hypervolume-Based Optimizer for High-Dimensional Objective Spaces

نویسندگان

  • Johannes Bader
  • Eckart Zitzler
چکیده

In the field of evolutionary multiobjective optimization, the hypervolume indicator is the only single set quality measure that is known to be strictly monotonic with regard to Pareto dominance. This property is of high interest and relevance for multiobjective search involving a large number of objective functions. However, the high computational effort required for calculating the indicator values has so far prevented to fully exploit the potential of hypervolume-based multiobjective optimization. This paper addresses this issue and proposes a fast search algorithm that uses Monte Carlo sampling to approximate the exact hypervolume values. In detail, we present HypE(Hypervolume Estimation Algorithm for Multiobjective Optimization), by which the accuracy of the estimates and the available computing resources can be traded off; thereby, not only many-objective problems become feasible with hypervolume-based search, but also the runtime can be flexibly adapted. The experimental results indicate that HypE is highly effective for many-objective problems in comparison to existing multiobjective evolutionary algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-monotonicity of Obtained Hypervolume in 1-greedy S-Metric Selection

The progression of the dominated hypervolume in the course of the optimization process, with respect to a global reference point, is thought to be monotonically increasing. This intuition is based on the observation that in each iteration the solution that contributes the least to the dominated hypervolume is eliminated. Derived from results of multiple SMS-EMOA runs with incorporated reference...

متن کامل

Improved quick hypervolume algorithm

In this paper, we present an improved version of recently proposed Quick Hypervolume algorithm for calculating exact hypervolume of the space dominated by a set of d-dimensional points. This value is often used as a quality indicator in multiobjective evolutionary algorithms and other multiobjective metaheuristics and the efficiency of calculating this indicator is of crucial importance especia...

متن کامل

Hybrid Algorithm for Multi-Objective Optimization by Greedy Hypervolume Maximization

This paper introduces a high-performance hybrid algorithm, called Hybrid Hypervolume Maximization Algorithm (H2MA), for multi-objective optimization that alternates between exploring the decision space and exploiting the already obtained non-dominated solutions. The proposal is centered on maximizing the hypervolume indicator, thus converting the multi-objective problem into a single-objective ...

متن کامل

A Bug in the Multiobjective Optimizer IBEA: Salutary Lessons for Code Release and a Performance Re-Assessment

The Indicator-Based Evolutionary Algorithm (IBEA) is one of the first indicator-based multiobjective optimization algorithms and due to its wide availability in several algorithm packages is often used as a reference algorithm when benchmarking multiobjective optimizers. The original publication on IBEA proposes to use two specific variants: one based on the ε-indicator and one based on the hyp...

متن کامل

HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization

In the field of evolutionary multi-criterion optimization, the hypervolume indicator is the only single set quality measure that is known to be strictly monotonic with regard to Pareto dominance: whenever a Pareto set approximation entirely dominates another one, then the indicator value of the dominant set will also be better. This property is of high interest and relevance for problems involv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010